Derivations and Identities for Kravchuk Polynomials
نویسندگان
چکیده
منابع مشابه
Bounds for zeros of Meixner and Kravchuk polynomials
The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way. The study of this phenomenon and the conditions under which it holds lead to a set of points that can be applied as bounds for the extreme zeros of the polynomials. We consider different sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three term recurrence rela...
متن کاملKravchuk Polynomials and Induced/Reduced Operators on Clifford Algebras
Kravchuk polynomials arise as orthogonal polynomials with respect to the binomial distribution and have numerous applications in harmonic analysis, statistics, coding theory, and quantum probability. The relationship between Kravchuk polynomials and Clifford algebras is multifaceted. In this paper, Kravchuk polynomials are discovered as traces of conjugation operators in Clifford algebras, and ...
متن کاملSome Identities for Chandrasekhar Polynomials
Basic techniques of linear algebra are used to derive some identities involving the Chandrasekhar polynomials that play a vital role in the spherical-harmonics (A) solution to basic radiative-transfer problems. @ 1997 Elsevier Science Ltd. All rights reserved
متن کاملSymmetric Identities for Euler Polynomials
In this paper we establish two symmetric identities on sums of products of Euler polynomials.
متن کاملConvolution Identities for Bernoulli and Genocchi Polynomials
The main purpose of this paper is to derive various Matiyasevich-Miki-Gessel type convolution identities for Bernoulli and Genocchi polynomials and numbers by applying some Euler type identities with two parameters.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrainian Mathematical Journal
سال: 2014
ISSN: 0041-5995,1573-9376
DOI: 10.1007/s11253-014-0896-9